Fluorine-Enriched Melt-Blown Fibers from Polymer Blends of Poly(butylene terephthalate) and a Fluorinated Multiblock Copolyester.

نویسندگان

  • Zaifei Wang
  • Christopher W Macosko
  • Frank S Bates
چکیده

Melt-blown fibers (dav ∼1 μm) were produced from blends of poly(butylene terephthalate) (PBT) and a partially fluorinated random multiblock copolyester (PFCE) leading to enhanced hydrophobicity and even superhydrophobicity (static water contact angle = 157 ± 3°) of the associated fiber mats. XPS measurements demonstrated quantitatively that the surface fluorine content increased systematically with the bulk loading of PFCE, rising to nearly 20 atom %, which corresponds to 41 wt % PFCE at a bulk loading of 10 wt %. The PBT/PFCE fibers exhibit greater fluorine surface segregation than either melt-blown PBT/poly(ethylene-co-chlorotrifluoroethylene) (PBT/PECTFE) fibers or electrospun fibers obtained from blends of poly(styrene) and fluoroalkyl end-capped polystyrene (PS/PSCF). Dynamic contact angle measurements further demonstrated decreased surface adhesion energy of the melt-blown PBT/PFCE fiber mats due to the blooming of PFCE to the surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and Properties of Polycaprolactone/Poly (Butylene Terephthalate) Blend

Polycaprolactone (PCL) and poly(butylene terephthalate) (PBT) blend was prepared by melt processing. The PCL/PBT blend showed similar morphology with that of pure PCL.The crystallization temperature of PCL was increased by the incorporation of PBT. It was also observed that the peak height in the DSC thermograms decreased and then disappeared by adding 40 % or more PBT which might be due to...

متن کامل

Compatibilization of polycarbonate/poly (ethylene terephthalate) blends by addition of their transesterification product

In this study, poly carbonate (PC) and poly (ethylene terephthalate) (PET) were reactive melt-blended under two different conditions to produce PC/PET copolymers. For each condition, samples were taken at specified mixing times representative a specific structure of copolymers and each one employed to physically compatibilize a PC/PET blend with a fixed composition. Reactive blending and copoly...

متن کامل

Toughening of thermoset polymers by rigid crystalline particles

The toughening of an aromatic amine-cured diglycidyl ether of bisphenoI-A epoxy with particles of crystalline polymers was studied. The crystalline polymers were poly(butylene terephthalate), nylon 6, and poly(vinylidene fluoride). Nylon 6 and poly(vinylidene fluoride) were found to toughen the epoxy about as well as did an equivalent amount of CTBN rubber. Poly(butylene terephthalate) was foun...

متن کامل

Simultaneous Electrospinning of Two Polymer Solutions in a Side-by-side Approach to Produce Bicomponent Fibers

5.1 Chapter Summary Bicomponent fibers, in the range of 100 nm to a few microns, of miscible poly(vinylchloride)/segmented polyurethane (PVC/Estane) and immiscible poly(vinyl chloride)/poly(vinylidienefluoride) (PVC/PVDF) were produced respectively by electrospinning two polymer solutions in a side-by-side approach. For each of the pairs investigated, PVC/Estane and PVC/PVDF, energy dispersive ...

متن کامل

Crystallization behaviour of cellulose acetate butylate/poly(butylene succinate)-co-(butylene carbonate) blends

The kinetics of the isothermal crystallization process from the melt of pure poly(butylene succinate)-co-(butylene carbonate) (PBS-co-BC) and its blends with cellulose acetate butylate (CAB) (10–30 wt%) was studied by differential scanning calorimetry (DSC) and the well-known Avrami equation. In the blends, the overall crystallization rate of PBS-co-BC became slower with increasing CAB content....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2016